Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An arsenate-activated glutaredoxin from the arsenic hyperaccumulator fern Pteris vittata L. regulates intracellular arsenite.

Identifieur interne : 000C28 ( Main/Exploration ); précédent : 000C27; suivant : 000C29

An arsenate-activated glutaredoxin from the arsenic hyperaccumulator fern Pteris vittata L. regulates intracellular arsenite.

Auteurs : Sabarinath Sundaram [États-Unis] ; Bala Rathinasabapathi ; Lena Q. Ma ; Barry P. Rosen

Source :

RBID : pubmed:18156657

Descripteurs français

English descriptors

Abstract

To elucidate the mechanisms of arsenic resistance in the arsenic hyperaccumulator fern Pteris vittata L., a cDNA for a glutaredoxin (Grx) Pv5-6 was isolated from a frond expression cDNA library based on the ability of the cDNA to increase arsenic resistance in Escherichia coli. The deduced amino acid sequence of Pv5-6 showed high homology with an Arabidopsis chloroplastic Grx and contained two CXXS putative catalytic motifs. Purified recombinant Pv5-6 exhibited glutaredoxin activity that was increased 1.6-fold by 10 mm arsenate. Site-specific mutation of Cys(67) to Ala(67) resulted in the loss of both GRX activity and arsenic resistance. PvGrx5 was expressed in E. coli mutants in which the arsenic resistance genes of the ars operon were deleted (strain AW3110), a deletion of the gene for the ArsC arsenate reductase (strain WC3110), and a strain in which the ars operon was deleted and the gene for the GlpF aquaglyceroporin was disrupted (strain OSBR1). Expression of PvGrx5 increased arsenic tolerance in strains AW3110 and WC3110, but not in OSBR1, suggesting that PvGrx5 had a role in cellular arsenic resistance independent of the ars operon genes but dependent on GlpF. AW3110 cells expressing PvGrx5 had significantly lower levels of arsenite when compared with vector controls when cultured in medium containing 2.5 mm arsenate. Our results are consistent with PvGrx5 having a role in regulating intracellular arsenite levels, by either directly or indirectly modulating the aquaglyceroporin. To our knowledge, PvGrx5 is the first plant Grx implicated in arsenic metabolism.

DOI: 10.1074/jbc.M704149200
PubMed: 18156657


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">An arsenate-activated glutaredoxin from the arsenic hyperaccumulator fern Pteris vittata L. regulates intracellular arsenite.</title>
<author>
<name sortKey="Sundaram, Sabarinath" sort="Sundaram, Sabarinath" uniqKey="Sundaram S" first="Sabarinath" last="Sundaram">Sabarinath Sundaram</name>
<affiliation wicri:level="2">
<nlm:affiliation>Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, University of Florida, Gainesville, FL 32611-0690, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, University of Florida, Gainesville, FL 32611-0690</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rathinasabapathi, Bala" sort="Rathinasabapathi, Bala" uniqKey="Rathinasabapathi B" first="Bala" last="Rathinasabapathi">Bala Rathinasabapathi</name>
</author>
<author>
<name sortKey="Ma, Lena Q" sort="Ma, Lena Q" uniqKey="Ma L" first="Lena Q" last="Ma">Lena Q. Ma</name>
</author>
<author>
<name sortKey="Rosen, Barry P" sort="Rosen, Barry P" uniqKey="Rosen B" first="Barry P" last="Rosen">Barry P. Rosen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18156657</idno>
<idno type="pmid">18156657</idno>
<idno type="doi">10.1074/jbc.M704149200</idno>
<idno type="wicri:Area/Main/Corpus">000C25</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C25</idno>
<idno type="wicri:Area/Main/Curation">000C25</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000C25</idno>
<idno type="wicri:Area/Main/Exploration">000C25</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">An arsenate-activated glutaredoxin from the arsenic hyperaccumulator fern Pteris vittata L. regulates intracellular arsenite.</title>
<author>
<name sortKey="Sundaram, Sabarinath" sort="Sundaram, Sabarinath" uniqKey="Sundaram S" first="Sabarinath" last="Sundaram">Sabarinath Sundaram</name>
<affiliation wicri:level="2">
<nlm:affiliation>Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, University of Florida, Gainesville, FL 32611-0690, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, University of Florida, Gainesville, FL 32611-0690</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rathinasabapathi, Bala" sort="Rathinasabapathi, Bala" uniqKey="Rathinasabapathi B" first="Bala" last="Rathinasabapathi">Bala Rathinasabapathi</name>
</author>
<author>
<name sortKey="Ma, Lena Q" sort="Ma, Lena Q" uniqKey="Ma L" first="Lena Q" last="Ma">Lena Q. Ma</name>
</author>
<author>
<name sortKey="Rosen, Barry P" sort="Rosen, Barry P" uniqKey="Rosen B" first="Barry P" last="Rosen">Barry P. Rosen</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="ISSN">0021-9258</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Motifs (physiology)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Aquaglyceroporins (genetics)</term>
<term>Aquaglyceroporins (metabolism)</term>
<term>Arabidopsis (enzymology)</term>
<term>Arabidopsis (genetics)</term>
<term>Arsenates (metabolism)</term>
<term>Arsenates (pharmacology)</term>
<term>Arsenites (metabolism)</term>
<term>Chloroplasts (enzymology)</term>
<term>Chloroplasts (genetics)</term>
<term>DNA, Complementary (genetics)</term>
<term>Drug Resistance (physiology)</term>
<term>Escherichia coli (genetics)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Herbicides (metabolism)</term>
<term>Herbicides (pharmacology)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutagenesis, Site-Directed (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Pteris (enzymology)</term>
<term>Pteris (genetics)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN complémentaire (génétique)</term>
<term>Aquaglycéroporines (génétique)</term>
<term>Aquaglycéroporines (métabolisme)</term>
<term>Arabidopsis (enzymologie)</term>
<term>Arabidopsis (génétique)</term>
<term>Arséniates (métabolisme)</term>
<term>Arséniates (pharmacologie)</term>
<term>Arsénites (métabolisme)</term>
<term>Chloroplastes (enzymologie)</term>
<term>Chloroplastes (génétique)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Escherichia coli (génétique)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Herbicides (métabolisme)</term>
<term>Herbicides (pharmacologie)</term>
<term>Motifs d'acides aminés (physiologie)</term>
<term>Mutagenèse dirigée (MeSH)</term>
<term>Protéines recombinantes (génétique)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Pteris (enzymologie)</term>
<term>Pteris (génétique)</term>
<term>Résistance aux substances (physiologie)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Aquaglyceroporins</term>
<term>DNA, Complementary</term>
<term>Glutaredoxins</term>
<term>Plant Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Aquaglyceroporins</term>
<term>Arsenates</term>
<term>Arsenites</term>
<term>Glutaredoxins</term>
<term>Herbicides</term>
<term>Plant Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Chloroplastes</term>
<term>Pteris</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Arabidopsis</term>
<term>Chloroplasts</term>
<term>Pteris</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Chloroplasts</term>
<term>Escherichia coli</term>
<term>Pteris</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN complémentaire</term>
<term>Aquaglycéroporines</term>
<term>Arabidopsis</term>
<term>Chloroplastes</term>
<term>Escherichia coli</term>
<term>Glutarédoxines</term>
<term>Protéines recombinantes</term>
<term>Protéines végétales</term>
<term>Pteris</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Aquaglycéroporines</term>
<term>Arséniates</term>
<term>Arsénites</term>
<term>Glutarédoxines</term>
<term>Herbicides</term>
<term>Protéines recombinantes</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Arséniates</term>
<term>Herbicides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Arsenates</term>
<term>Herbicides</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Motifs d'acides aminés</term>
<term>Résistance aux substances</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>Drug Resistance</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Molecular Sequence Data</term>
<term>Mutagenesis, Site-Directed</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Données de séquences moléculaires</term>
<term>Mutagenèse dirigée</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">To elucidate the mechanisms of arsenic resistance in the arsenic hyperaccumulator fern Pteris vittata L., a cDNA for a glutaredoxin (Grx) Pv5-6 was isolated from a frond expression cDNA library based on the ability of the cDNA to increase arsenic resistance in Escherichia coli. The deduced amino acid sequence of Pv5-6 showed high homology with an Arabidopsis chloroplastic Grx and contained two CXXS putative catalytic motifs. Purified recombinant Pv5-6 exhibited glutaredoxin activity that was increased 1.6-fold by 10 mm arsenate. Site-specific mutation of Cys(67) to Ala(67) resulted in the loss of both GRX activity and arsenic resistance. PvGrx5 was expressed in E. coli mutants in which the arsenic resistance genes of the ars operon were deleted (strain AW3110), a deletion of the gene for the ArsC arsenate reductase (strain WC3110), and a strain in which the ars operon was deleted and the gene for the GlpF aquaglyceroporin was disrupted (strain OSBR1). Expression of PvGrx5 increased arsenic tolerance in strains AW3110 and WC3110, but not in OSBR1, suggesting that PvGrx5 had a role in cellular arsenic resistance independent of the ars operon genes but dependent on GlpF. AW3110 cells expressing PvGrx5 had significantly lower levels of arsenite when compared with vector controls when cultured in medium containing 2.5 mm arsenate. Our results are consistent with PvGrx5 having a role in regulating intracellular arsenite levels, by either directly or indirectly modulating the aquaglyceroporin. To our knowledge, PvGrx5 is the first plant Grx implicated in arsenic metabolism.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18156657</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>05</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2012</Year>
<Month>11</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0021-9258</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>283</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2008</Year>
<Month>Mar</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>An arsenate-activated glutaredoxin from the arsenic hyperaccumulator fern Pteris vittata L. regulates intracellular arsenite.</ArticleTitle>
<Pagination>
<MedlinePgn>6095-101</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>To elucidate the mechanisms of arsenic resistance in the arsenic hyperaccumulator fern Pteris vittata L., a cDNA for a glutaredoxin (Grx) Pv5-6 was isolated from a frond expression cDNA library based on the ability of the cDNA to increase arsenic resistance in Escherichia coli. The deduced amino acid sequence of Pv5-6 showed high homology with an Arabidopsis chloroplastic Grx and contained two CXXS putative catalytic motifs. Purified recombinant Pv5-6 exhibited glutaredoxin activity that was increased 1.6-fold by 10 mm arsenate. Site-specific mutation of Cys(67) to Ala(67) resulted in the loss of both GRX activity and arsenic resistance. PvGrx5 was expressed in E. coli mutants in which the arsenic resistance genes of the ars operon were deleted (strain AW3110), a deletion of the gene for the ArsC arsenate reductase (strain WC3110), and a strain in which the ars operon was deleted and the gene for the GlpF aquaglyceroporin was disrupted (strain OSBR1). Expression of PvGrx5 increased arsenic tolerance in strains AW3110 and WC3110, but not in OSBR1, suggesting that PvGrx5 had a role in cellular arsenic resistance independent of the ars operon genes but dependent on GlpF. AW3110 cells expressing PvGrx5 had significantly lower levels of arsenite when compared with vector controls when cultured in medium containing 2.5 mm arsenate. Our results are consistent with PvGrx5 having a role in regulating intracellular arsenite levels, by either directly or indirectly modulating the aquaglyceroporin. To our knowledge, PvGrx5 is the first plant Grx implicated in arsenic metabolism.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sundaram</LastName>
<ForeName>Sabarinath</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, University of Florida, Gainesville, FL 32611-0690, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rathinasabapathi</LastName>
<ForeName>Bala</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Lena Q</ForeName>
<Initials>LQ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rosen</LastName>
<ForeName>Barry P</ForeName>
<Initials>BP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>EF052272</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM 52216</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>12</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051397">Aquaglyceroporins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001149">Arsenates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018053">Arsenites</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018076">DNA, Complementary</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006540">Herbicides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N5509X556J</RegistryNumber>
<NameOfSubstance UI="C015001">arsenite</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N7CIZ75ZPN</RegistryNumber>
<NameOfSubstance UI="C025657">arsenic acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020816" MajorTopicYN="N">Amino Acid Motifs</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051397" MajorTopicYN="N">Aquaglyceroporins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001149" MajorTopicYN="N">Arsenates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018053" MajorTopicYN="N">Arsenites</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002736" MajorTopicYN="N">Chloroplasts</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018076" MajorTopicYN="N">DNA, Complementary</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004351" MajorTopicYN="N">Drug Resistance</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006540" MajorTopicYN="N">Herbicides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032495" MajorTopicYN="N">Pteris</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>12</Month>
<Day>25</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>5</Month>
<Day>31</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>12</Month>
<Day>25</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18156657</ArticleId>
<ArticleId IdType="pii">M704149200</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M704149200</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Floride</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Ma, Lena Q" sort="Ma, Lena Q" uniqKey="Ma L" first="Lena Q" last="Ma">Lena Q. Ma</name>
<name sortKey="Rathinasabapathi, Bala" sort="Rathinasabapathi, Bala" uniqKey="Rathinasabapathi B" first="Bala" last="Rathinasabapathi">Bala Rathinasabapathi</name>
<name sortKey="Rosen, Barry P" sort="Rosen, Barry P" uniqKey="Rosen B" first="Barry P" last="Rosen">Barry P. Rosen</name>
</noCountry>
<country name="États-Unis">
<region name="Floride">
<name sortKey="Sundaram, Sabarinath" sort="Sundaram, Sabarinath" uniqKey="Sundaram S" first="Sabarinath" last="Sundaram">Sabarinath Sundaram</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C28 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C28 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18156657
   |texte=   An arsenate-activated glutaredoxin from the arsenic hyperaccumulator fern Pteris vittata L. regulates intracellular arsenite.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18156657" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020